Presented at the 4th NSWC
Systems Reengineering Technology Workshop, February 8, 1994

Reengineering to Increase Maintainability and Enable Reuse

Grady H. Campbell, Jr.

Software Productivity Consortium
2214 Rock Hill Road
Herndon, Virginia 22070

As existing systems are changed to keep up with
changing needs, their structure becomes less coherent and
cohesive making it difficult and increasingly expensive to
 make further changes. In addition, as the legacy of
complex automated systems grows while the available
resotrces for upgrading or replacing them shrink, there is
increasing concern for finding ways to leverage these
systems as a base for new or improved existing systems.
Reengineering is the concept of creating an improved
system by judiciousty reorganizing, revising, and extend-
ing an existing system. Reuse is a related concept in which
a set of existing similar systems provide the basis for a
product line of new systems. The Consortium’s Synthesis
methodology integrates reengineering within the frame-
work of a systematic reuse-driven process that promises
more cost-effective development and meintenance of
software and systems in the future.

Motivations for reengineering

Reengineering is commonly viewed as a variant of
system maintenance. Maintenance differs from other
phases of system engineering in that its focus is an
operational system that requires modifications to correct
errors, to support customer needs more effectively, or to
satisfy changed needs. Over its useful lifetime, a system
must be repeatedly modified to stay responsive to the
needs of the customers it is intended to serve. However,
modifying & system in response to changing needs
inevitably undermines the conceptual and structural
integrity and subsequent modifiability of the system as
needs continue to change, Reengineering is distinguished
from other forms of maintenance because it presumes the
need for a redesign of the existing system to make current
and future changes more cost-effective and less error-
prone. It is a type of maintenance because the system is
not rebuilt from scratch but is derived in large part from
the artifacts of the existing system.

"This material is based in part upon work funded by the Virginia
Center of Bxcellence for Software Reuse and Technology Transfer,
sponsored by the Advanced Research Projects Agency under Grant
MDAG72-92-1-1018. The content does notnecessarily reflect the
position or the policy of the U.S. Government, and no official en-
dorsement should be inferred

Reengineering of a system involves first the analysis
of the existing system, referred to as reverse engineering,
and then reformulation, restructuring, and modification of
the system so that required changes are easier to make
reliably. Reengineering may be needed for several
reasons:

+ Documentation of the system’s requirements, design,
and implementation has either been lost or become
unreliable because of subsequent changes to the im-
plementation. Original needs may not be well under-
stood. This makes it difficult and risky to change the
system because of uncertainties in how parts of the
system interact or why certain functions behave as
they do.

¢ The needs served by the system have changed suffi-
ciently that the original design is no longer a good
solution. A redesign is required for the system to con-
tinue to be acceptable to its users.

» The technology upon which the system is based has
become obsolete. To accommodate improved
technology and better serve user needs, the system
must be substantially redesigned.

In the worst case, a system may have all of these
problems, Although reengineering can accomplish its
intended purpose of creating a better structured, more
maintainable system in the short run, it may do nothing to
avoid recurrence of the problems that led to the need for
reengineering in the first place. If recurrence of these
problems is not somehow prevented by the reengineering
or avoided in subsequent maintenance of the system, then
after some time reengineering will again be necessary.
Taking a different view of reengineering can reduce
recurrence of these problems.

A framework for reengineering

The driving concern for reengineering is the ability to
create a system that can be easily changed as costomer
needs change. The driving concern for reuse is the need to
field multiple systems or system versions that satisfy
similar yet differing needs, of one or several customers,
without having to repeatedly develop similar software
from scratch. In reality, these two concerns are the same:

the ability to produce similar systems, whether serially or
concurrently, to satisfy similar needs.

Looking more closely at the possible motivations for

reengineering a system reveals several alternative objec-
tives:

¢ To make changes in the functioning or operational
properties (e.g., reliability, performance) of an exist-
ing system

+ To make it easier or safer to make current and future
changes in an existing system

s Touseexisting systems as a foundation for similar fu-
ture systems

When reengineering is motivated only by the first of
these objectives, the situation is not particularly different
from that of conventional development and maintenance.
In this case, the objective is most likely addressed
adequately by traditional approaches to maintenance in
which the architecture of a system is upgraded or
particular data structures or algorithms are repiaced by
improved alternatives. The other two objectives warrant a
different approach based, the Consortium believes, on the
concept of program families {1, 2].

When the objective of reengineering is either to make
a system easier to change or to use legacy systems as a
foundation for future systems, Dijkstra’s and Parnas’
concept of orienting development to a family of systems
provides significant opportunities for leverage in compar-
ison to a traditional, single-system orientation. Even a
single system inevitably evolves through multiple ver-
sions because of poorly understood requirements or to
accommodate changing requirements or technology. The
Consortinm’s approach to reengineering is based on
families of systems, within the framework of the Synthe-
sis methodology for reuse-driven software processes [3].
Reengineering within a Synthesis process comprises
conventional! reverse engineering capabilities for the
analysis of existing artifacts combined with an innovative
reuse-driven approach to creating and using families of
systems as & basis for both the development and
maintenance of systems.

A reuse-driven software process

An organization’s primary motivation for instituting a
Synthesis process is that the organization perceives itself
as having expertise in and serving the market for a
cohesive business area. The market has the need for either
a single evolving system or several similar systems, which
in either case offers a basis for conceiving a family of
systems.

The essence of our approach is that development
should result in a family of similar systems from which it
is possible to mechanically derive alternative members of
the family for rapid delivery to customers. A family is not
just an abstract conception but a concrete formulation. It
is designed and constructed as the means for systematic
production and modification of systems to satisfy diverse
or changing needs.

A Synthesis process, as depicted in Figure 1, consists
of two major activities: domain engineering and applica-
tion engineering. These activities, described briefly here,
are defined fully and in detail in [4], along with extensive
practical guidance.

Application engineering is concerned entirely with
the needs of a particular customer and with producing a
system that effectively addresses those needs. Applica-
tion engineering prototypically consists of four subactivi-
ties:

* Project management. Planning, monitoring, and con-

trolling an application engineering project to respond
to customer needs.

» Application modeling. Formalizing cnstomer needs
and analyzing alternative solutions in terms of a set of
decisions that are sufficient to distinguish a particular
instance of a supported family of systems.

s Application production. Producing a system by
means of a prescribed mecharnical selection, adapta-
tion, and composition of reusable components, di-
rected by the decisions made in application
modeling.

« Delivery and operation support. Installing a system in
its operational environment, training users, assisting
them in effective system operation, and identifying
changes that will make the system a better fit o cus-
tomer needs.

Domain engineering focuses on how to make applica-
tion engineering most effective in meeting both the
objectives of the business and the needs of the targeted
market. To achieve this, domain engineering formalizes a
family of systems as a domain by identifying the common
and varying features of the type of systems that the market
requires. Typically, domain engineering supports multi-
ple application engineering projects. Domain engineering
consists of five subactivities:

* Domain management. The planning, monitoring, and
control of the domain engineering effort. This en-
compasses coordination with application engineer-
ing project management and concern for all facets of
process management including configuration man-
agement and quality assurance disciplines.

+ Domain definition, Establishing the scope and extent
of the domain and formalizing the variabilities that
differentiate instances of the targeted family of sys-
tems.

e Product family engineering, Formalizing standard-
ized (adaptable) requirements, design, and imple-
mentation for the family of systems and all associated
deliverable and supporting work products.

s Process engineering. Formalizing a definition of a
standardized application engineering process and
creating automated support for its performance. The
prototypical description of application engineering
described above is tailored to suit the specific needs
of the domain and associated projects.

e Project support. Assisting application engineering
projects to make effective use of the domain. This in-
cludes validating whether the domain is responsive to
project needs and identifying needed improvements
and changes.

A domain is a formalization of a family of systems and
~an associated process for producing members of the
family. A system is represented by a set of artifacts (ie.,
work products). A system is not just a collection of
implemented (i.e., code) components but includes
associated requirements/design/user documentation, test
materials, management plans, and any other artifacts that
result from development or support the use or mainte-
nance of the system. Synthesis is concerned with

producing all of these when a system is needed. Creating a
family of systems means creating a representation of each
type of relevant artifact as a family in its own right.
Furthermore, artifacts may be made up of components
which are in turn instances of component families. An
essential objective of a Synthesis process is to create a
material representation of all necessary system, artifact,
and component families.

The essence of a family in this sense is that it represent
a set of ‘similar’ individuals, by which we mean
individual things that are identical relative to a specified
set of traits. A family is formulated as an abstraction that
denotes a set of similar individuals and identifies the
particular traits that determine membership in the family.
Materially representing a family requires expressing not
only the substance of similarity but, equally important,
the details of variation (out of which come distinct
individuals). Variations are additional traits that together
make each of the individual members of a family unique
and correspond to decisions that are necessarily deferred
until a particular family member (i.c., individual system,
artifact, or component) is needed. Production of an
individual then reduces to resolving these deferred
decisions as needed to designate and mechanically derive
the corresponding member of the family.

Methods for creating and using component families
are referred to as metaprogramming [5]. A metaprogram-
ming technique specifies how to create a component
family and subsequently transform it into concrete

Business Objecﬁvesl % Domain Knowledge
¥ .
Domain Engineeringj —————— T
I
|
Application i Feedback
Engineering Process { (Customer and
Support | Project
1 Neeads)
|
Customer [- |
Requiremenis = _|
Customer — —-=——=— {Appiication Engineering _
Key:
1 Activity
Application Product > Product
—> Product flow
——+% Information flow
Figure 1. A Synthesis Process
3

instances, Mechanisms such as C preprocessor constructs,
Ada generics, and form-letter capabilities of word
processing software have proven sufficient for a viable
Synthesis process. Other, special-purpose mechanisms,
which are more complete but experimental, may provide
additional leverage.

Experience with Synthesis

The Synthesis approach, until now emphasizing reuse
with only limited concern for reengineering, has been
used extensively by several industrial organizations. Two
organizations, in particular, have contributed significant-
ly to understanding Synthesis and how to achieve
effective reuse:

*» Rockwell Command and Control Systems Division.
Rockwell began using Synthesis experimentally in
1990. They have now progressed to the point that
they are evaluating its use in support of a substantial
business area. Their experience is described in [6].

* Boeing/NAVAIR STARS® demonstration project.
Boeing evaluated and selected the Synthesis method-
ology as the basis for its demonstration of megapro-
gramming and reuse [7]. This experience is now
being transferred into trial use of Synthesis by the Na-
val Training Systems Command of NAVAIR.

In addition to these two examples, Synthesis is in
experimental use on projects in Martin-Marietta,
Lockheed, and other organizations. Based on this experi-
ence, Synthesis is proving to be a viable and sound
approach for systematic reuse-driven software engineer-
ing. The experience so far in all of these is that a Synthesis
process provides an effective capability for rapidly
building multiple systems or system versions and subse-
gquently modifying them as customer needs change. We
believe that Synthesis also provides an effective frame-
work for systematic reengineering as an aid to leveraging
existing systems in producing new or improved software
and systems.

Reengineering within a Synthesis process

An organization institutes a Synthesis process because
it has expertise in a targeted business area and intends o
serve the associated market. As a rule, requisite evidence
of sufficient expertise to justify such a business commit-
ment is that the organization has produced systems for this
market in the past. Such legacy systems are a good initial
source from which to create a domain as the formalization
of a family. For effective use of legacy systems,
reengineering is an infegral element of the Synthesis
Process.

* STARS is the Software Technology for Adaptable Reliable Systems
program of the Advanced Research Projects Agency.

Just as the emphasis in Synthesis is on creating a
family of similar systems, the result of reengineering
within Synthesis shoutd be not just an ‘improved’ variant
of the legacy system(s) but a family of similar systems
from which alternative instances of the family can be
derived. Derivable instances include alternative systers
that are equivalent to an initial legacy system but
improved in some way as well as systems that are useful
hybrids or modifications of initial legacy systems.

Within Synthesis, reengineering is not viewed as a
separate activity. Since a Synthesis process is meant to be
a comprehensive engineering process, many of the
necessary aspects of reengineering are already a part of
the process. Currently, whenever a Synthesis activity
involves the creation of a work product, it accommodates
the analysis of existing systems as one source of the
information in that work product. For example, require-
ments specifications of legacy systems can be a source for
determining how best to express the requirements for the
family as a whole. Similarly, test cases used in regression
testing of those systems can be a source for creating test
cases to be used in festing fuiure systems. Only the use of
reverse engineering capabilities need further elaboration
as integral elements of Synthesis activities. In large part,
this means the enhancement of the product family
engineering activity of domain engineering to describe
and explain the use of such capabilities.

A family of systems can be derived initially from
either a single or several similar Jegacy systems. Reengi-
neering may be concerned with any and all of the work
products associated with a system. When a system is
modified, changes are rarely limited to code components;
reengineering should facilitate coordinated change across
the entire set of artifacts associated with a system,
including requirements, design, code, documentiation,
and test support.

One aspect of a Synthesis process is the design and
implementation of component families. This takes the
form of reengineering when components are available
from legacy systems. Reengineering of legacy compo-
nents to create a family can start with a bottom-up analysis
of similarities among existing components. However, in a
Synthesis process, analysis is guided by a top-down
specification of component families based on an orga-
nization’s business objectives. The challenges in creating
a viable family by reengineering are to identify compo-
nents that fit sufficiently within the scope of the
envisioned family and to distinguish essential variations
among identified components (i.e. driven by sound
customer requirements or engineering concerns) from
incidental {and therefore unneeded) variations. The
leverage from this approach to reengineering comes from

recognizing that distinguishable instances can be derived
from the unified abstraction of a family.

System reengineering as a generalization of
software reengineering

System engineering is concerned with hardware,
software, and manual procedures and the interactions
among them. Much of the interest in reengineering has
focused on software because of the increasing cost of
maintenance associated with software changes. However,
as defense spending shrinks, the useful life of individual
systems grows longer. To respond to new and changing
needs, there is a corresponding need and benefit in
reengineering complete systems comprising hardware,
software, and manual procedures. Reengineering a sys-
tem can involve coordinated changes to any of:

« The system architecture, including physical and in-
formational connections and the number, identity,
and capabilities of the system’s hardware and soft-
ware components

» The design and implementations of individual hard-
ware and software components

» The businessforganizational and user processes with-
in which the hardware/software system operates

Another dimension of reengineering at the system
level, in contrast with the software level, is that the
tradeoff between hardware, software, and manual proce-
dures can be reconsidered. As technology advances, it
becomes easier to move software functions into custom
hardware. Akernatively, moving a hardware function into
software can increase flexibility for modifying it in
response to changing needs. Similarly, as system usage
matures and manual procedures become more standard-
ized, it becomes feasible to implement more of them in
software,

As with software-oriented reengineering, the goal of
system reengineering should not be narrowly to recon-
struct a system to meet current needs but also to facilitate
and reduce the costs of future changes as well. From this
perspective, significant leverage arises from considering
overall system concerns, as well as those related to each
hardware, software, and procedural component of a
system, within a reengineering approach. Furthermore,
the similarity of motivations for reuse and reengineering
justifies a unified approach for systems as well as for
software.

Issues in reengineering

Most of the same issues that make system engineering
a complex task, such as:

e Understanding the real requirements for a system so
that effort is not wasted solving the wrong problem

» FEvaluating alternative solutions and making engi-
neering tradeoffs to attain a proper balance among
system properties such as performance, reliability,
development costs, and operating costs

s Verifying process performance and intermediate
work products and validating the final product to en-
sure that the problem has been solved properly and
comrectly

are similarly a concern for reengineering. In addition to
these common concerns, reengineering raises additional
issues, specifically an extended verification problem and
a deoptimization problem in reverse engineering. These
problems are inherent to reengineering, regardless of
approach.

Whenever a system is constructed, it must be vali-
dated to determine whether it satisfies the customer’s
actual needs. Because in the context of reengineering an
operational system already exists, it is reasonable io
expect that validation reduces to a problem of verifying
the replacement system as the equivalent of the existing
system. When the replacement system is supposed to have
identical functionality to the current system, this equates
to a total regression test of the replacement system.
However, creating a replacement system with identical
functionality is seldom feasible or necessary; creating
only near-identical functionality is usually sufficient and
less costly. Unfortunately, a divergence from identical
functionality makes regression testing much more diffi-
cult. When, as is often the case because of changed needs,
the replacement system also must differ in certain
functionality from that of the current system, the problem
takes on the characteristics to a greater or lesser degree of
a complete revalidation, For reengineering to be practical,
the effort of not only development but of verification and
validation as well must be significantly reduced as
compared to that of completing the system from scrach.

Reengineering generally requires the reverse engi-
neering of a system for recovery of missing or obsolete
design information or to establish precise, as-implement-
ed requirements. Unfortunately, particularly in the case of
software, the as-implemented structure is often an
optimized equivalent of the intended design. For exam-
ple, real-time embedded software usually entails respond-
ing to asynchronous events in the environment; logically,
this corresponds to an architecture consisting of multiple
concurrent processes. However, to satisfy stringent per-
formance constraints, such an architecture has traditional-
ly been implemented in a cyclic executive in which the
logic of the processes is interleaved i a nonobvious
fashion. Trivial reverse engineering would not reveal the

true logical siructure of the software but instead would
describe a much more complex linear structure. Reverse
engineering technigues must be developed that help
discover the original requirements and design while
recognizing that the implementation is actually an
optimization.

Conclusions

The Synthesis methodology for domain-specific soft-
ware development offers a comprehensive framework for
a reuse- and reengineering-based approach to revitalizing
existing operational systems and producing new, more
maintainable systems. Issues remain in the specific
methods and technologies of reengineering, reuse-driven
product lines, and process automation. However, based on
extensive frial use by industry and government, the
essential process framework is sound. Further work will
demonstrate the benefits of taking such a product line
perspective whether the motivation is to reduce the costs
of new development or the costs of maintenance and
whether the focus is on software or on systems.

Acknowledgments

Rich McCabe, Steve Wartik, and Roger Williams each
provided helpful comments that greatly improved this

paper.

References

[1] EW. Dijkstra. “Notes on Structured Programming.”
Structured Programming, OJ. Dahl, EW. Dijkstra,
and C.AR. Hoare, Eds. Academic Press, London,
1972, pp. 1-82.

[2] DavidL.Parnas, “On the Design and Development of
Program FPamilies,” JEEE Trans. Software Eng.;
SE-2, 1976, pp. 1-9.

[3] Grady Campbell, Stuart Faulk, and David Weiss.

Introduction to Synthesis, INTRO_SYNTHE-
SIS_PROCESS-90019-N. Software Productivity
Consortinum, Herndon, Va., 1990.

4] Software Productivity Consortium. Reuse-Driven
Software Processes Guidebook, SPC-92019-CMC,
?&ft?:nare Productivity Consortium, Herndon, Va.,

[5] Grady Campbell. “Abstraction-Based Reuse Reposi-
tories.” AIAA Computers in Aerospace VII Confer-
ence, Monterey, Ca., 1989, pp. 368-373.

[6] James O’Connor, Catharine Mansour, Jerry Turner-
Harris, and Grady Campbell. Exploring Systematic
Reuse for Command and Control Systems,
SPC-92020-CMC. Software Productivity Consor-
tium, Herndon, Va., 1993,

[7} B* Freemon. STARS PSA S0I Eaxperience Report,
D495-20154-1, The Boeing Company. 1993,

